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An improved method of crystallographic structure refinement, especially suitable for large molecules, is 
described, it is based on simultaneous minimization of a realistic potential-energy function and a crystallo- 
graphic residual. The method has already proved its worth in the final stages of refinement of two structures; 
an application to crude wiremodel coordinates of a small protein is described and evaluated. 

Introduction 

Until recently the refinement of macromolecular struc- 
tures against X-ray diffraction data was a laborious 
process, involving many comparisons of a model with a 
difference map, followed by manual correction of the 
model, coordinate idealization, and further refinement. 
The traditional method, Diamond's (1971) real-space 
refinement, treats torsion angles (and possibly some 
bond angles) as variables; it has a wide range of 
convergence (Diamond, 1976), but suffers from the 
disadvantage that it is tied to a particular set of 
'observed' phases; that is, the function minimized is 

1 
V v h 

whereas we should ideally seek to minimize 

A =  Z (IFol -IFcl)2" (2) 
h 

We can approach this ideal with Diamond's method 
by using a new map for each cycle, the coefficients of 
which are [Fol exp(ittc) or (21Fol -- IFcl)exp(i.c). 
Nonetheless, this is expensive and still biased toward 
the starting structure, so that convergence eventually 
becomes slow. 

(2) may be minimized by conventional crystallo- 

* Died 14 July 1978. 

graphic least squares, but only if very high resolution 
data are available (see, for example, Watenpaugh, 
Sieker, Herriott & Jensen, 1973). An alternative 
method is to compute unconstrained shifts, either by 
least squares or from a difference map, using the 
gradient/curvature method (Freer, Alden, Levens & 
Kraut, 1976) to apply these shifts for several cycles, 
and then to re-idealize the bond lengths and angles. 
This method also works well with high-resolution (<2 
A) data. 

Consider now the problem of refining a rather poorly 
determined structure, in which atoms may be mis- 
placed by several ~.ngstr6ms. The radius of con- 
vergence of least-squares methods is dependent on the 
data resolution (typically d/4 where d is the spacing of 
the highest-order reflexion). Thus to have any hope of 
correcting large errors automatically, we must start 
with low-resolution data. Unconstrained methods are 
unlikely to work in this case, since the shifts will be so 
large as to alter the stereochemistry in a way that may 
not easily be reversed by idealization. The solution is to 
use a least-squares technique in which constraints (or 
restraints) on the stereochemistry are included. Two 
such methods have recently been reported. Konnert 
(1976) uses Waser's (1963) method to impose quad- 
ratic constraints on bond lengths and angles, and solves 
the resulting sparse set of equations by the method of 
conjugate gradients. Sussmann, Holbrook, Church & 
Kim (1977) have used a mixture of constraints and 
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restraints, with similar results. Both methods are some- 
what slow (Schmidt, Girling & Amma, 1977), and 
neither seems to take any account of close non-bonded 
contacts. The method proposed here minimizes a 
complete potential-energy function (Levitt, 1974) which 
includes terms for bond stretching, bond-angle bending, 
torsional potentials, and non-bonded and electrostatic 
forces. The crystallographic residual (2) and its deriva- 
tives with respect to positional parameters are com- 
puted externally, and used as input to a modified 
version of Levitt's energy-minimization program which 
minimizes E + kA by the conjugate-gradients method. 
The relative contributions of the X-ray and energy 
terms to the residual are controlled by the constant k. 
The best choice of this parameter, so as to produce the 
most nearly 'correct' structure, is something of a 
problem; we have chosen values empirically which 
make E and kA numerically comparable, so that both 
terms are reduced during minimization. The method is 
very fast (see below), and has the great advantage of 
allowing a very flexible specification of restraints. 

Computational methods 

The standard conj ugate-gradients minimization 
algorithm (Fletcher & Reeves, 1964) recomputes the 
function E and its first derivative many times during a 
round of refinement, so that it is not limited to strictly 
quadratic functions. A is very expensive to compute, 
and so we calculate it and its derivatives at the start of 
each round, and make the usual least-squares 
assumption that F c is a linear function of the positions 
x i. Thus 

OA c° l F c___~l 
- -  : - 2  Z ( I F o -  IF l) 
c~x~ h C~X~ 

co2 A c31Fcl cOlFcl 
- - - 2 ~  
Ox i Oxj Ox i Oxj 

On each iteration of the minimization, A and its first 
derivative are updated according to 

A : A 0 + 6 x  i + Ox iOx j6x ic~x j  (3) 

and 

- _ -  ÷ 

Ox i o j Ox i Oxj 

and the updated estimates are used for further 
iterations. At the end of the process, the actual value of 
A is recomputed and is found to agree more or less with 
the value estimated from O), depending on the validity 
of the assumption of linearity. 

A and its derivatives were initially computed with a 
conventional least-squares program using the 'all- 
planes-one-atom' algorithm (Rollett, 1965; Burnett & 

Nordman, 1974). The only off-diagonal terms of the 
second derivative to be calculated were those relating 
different parameters of the same atom. Despite this, the 
calculation becomes very time-consuming at high 
resolution, and was abandoned in favour of a least- 
squares method based on the fast Fourier transform 
algorithm. The method used is a slight modification of 
that developed by Agarwal (1978) and will not be 
described in detail here. It is based on Cochran's (1948) 
observation that shifts computed from a difference 
density map (the gradient/curvature method) are 
equivalent to those found by diagonal least-squares 
refinement, where each term in the normal matrix is 
weighted by the inverse of the atomic form factor. This 
weighting factor may be removed by convoluting the 
gradient of the difference map (around the atomic site) 
with the transform of the form factor, that is, with a 
modified electron-density profile. In our procedure the 
gradient of the difference map is computed by 
numerical difference rather than by computing three 
differential syntheses (one for each direction); other- 
wise our procedure seems equivalent to that of Agarwal 
(1978). 

The least-squares algorithm calls for random access 
to a large difference density map. It can be made extra- 
ordinarily fast either by holding the whole of the map in 
computer core or by pre-sorting the atomic coordinates 
so that only a few map sections are needed at any one 
time. In the interests of generality, however, we have 
preferred to use a double-sort technique similar to that 
used to average electron-density maps (Harrison & 
Jack, 1975; Bricogne, 1976). Only the diagonal terms 
of the second derivative are calculated; although in 
principle the method can handle off-diagonal terms, the 
amount of computation would become prohibitive. 
Derivatives of A with respect to occupancy and 
temperature factor may also be computed; these use the 
difference map itself rather than its gradient. 

Results 

The method was originally devised for the structure 
refinement of tRNA (Hingerty, Brown & Jack, 1978), 
where the conflict between g~od base-pairing geometry 
and a good fit to the X-ray data had made real-space 
refinement of little further use (Jack, Ladner & Klug, 
1976). Here it was very successful, reducing R from 
0.26 to 0-23 in a single round, after the real-space 
method had apparently converged. More recently, an 
application to oxymyoglobin (Phillips, 1978), starting 
from real-space-refined Met-myoglobin coordinates 
(Takano, 1977) reduced R from 0.32 to 0.20 at 2 A 
resolution. 

To what extent is the method useful for refining 
crude coordinates such as those measured from a wire 
model? The structure of bovine pancreatic trypsin 
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Table 1. Summary  o f  refinement 

Energy (kcal tool-1) R.m.s. 
Resolution (A) A movement 

Cycle and (number ofF's) Bond Angle Torsion Non-bond k (e 2 x 108) R (,~,) 

0 (WM) 1.5 (7952) 0.562 0-511 
1 5-0 (227) 293 186 164 5384 0.0002 0.177 0.473 

202 468 186 -1214 0.072 0.345 0.27 
2 4.0 (454) 0.199 0.386 

68 255 164 -1395 0.0001 0.180 0.349 0,31 
3 3.4 (679) 0.248 0-357 

78 290 171 -1381 0.0001 0-192 0.315 0.38 
4 3-0 (1078) 0.205 0.384 

54 236 166 -1436 0.0001 0.188 0.348 0.41 
5 2.8 (1325) 0.186 0.370 

52 223 172 -1445 0.0001 0.183 0-358 0.46 
6 2.5 (1848) 0.200 0.400 

127 336 198 -1419 0.0002 0.156 0.355 0.54 
7 2.2 (2677) 0.181 0.382 

103 316 194 -1481 0.0002 0-192 0.364 0.57 
8 2.0 (3539) 0.214 0.387 

139 340 198 -1457 0.00025 0.202 0.369 0-60 
9 1.75 (5164) 0.224 0.394 

145 332 192 -1490 0.00025 0-211 0.381 0-61 
10 1.5 (7952) 0-284 0-401 

157 332 191 -1501 0.00025 0.276 0.391 0.63 
11 1-5 (7952) 0.149 0.363 B only 
12 1.5 (7952) 0-141 0.357 B only 
13 1-5 (7952) 762 603 247 98 0.001 0.129 0.335 0-896 
14 1-5 (7952) 133 393 264 -1400 0-0005 0-133 0-337 0.892 

The decrease in A between cycles 4 and 5 is a result of re-scaling F o to F c. H atoms (at positions calculated assuming exact trigonal or 
tetrahedral heavy-atom coordination) were included in the energy calculation (but not the structure factor calculation). Later trial 
calculations suggested that this was an unnecessary sophistication. 

inhibitor (PTI) (Deisenhofer  & Steigemann,  1975, here- 
after D&S) is a good test example, since it is small (454 
non-hydrogen  atoms), and exhaustively refined coor- 
dinates are available which serve as a s tandard for 
compar ison with any other sets. 

Structure factors computed  from the wire-model 
coordinates  of  PTI gave R = 0.51 1 for 7952 reflexions 
with spacings between 7 and 1.5 ,/k. Ten rounds of  E + 
kA minimization,  gradually increasing the data  
resolution, decreased R to 0.391 (Table 1). This 
compares  well with the value of  0 .384 which is the best 
value obtained by D&S using real-space refinement 
without  study of difference maps. After two cycles of 
refinement of  individual temperature  factors (R = 
0.357),  a difference map  clearly showed most  of  the 
conformat ional  errors ment ioned by D&S (§ 3.7). At 
this stage the r.m.s, a tomic movemen t  for all a toms was 
0.63 A. The largest error which had been corrected was 
2.1 /~, (No 2 of  Gin31);  on the other hand, a 3.6/~, error 
in the posit ion of S~ of  Met52 (caused by a 180 ° error 
in the torsion angle Z 2) was not  corrected,  a l though the 
true position was obvious from the difference map. 

Table 1 summarizes  the course of  refinement. It can 
be seen that  the most  dramat ic  changes occurred in the 
first round (5 /~ resolution), and also when the 
resolution was increased from 2.8 to 2.5 A. In both 
cases a large value of  the scale factor k was used; k was 

, W M  

~° ~ E * k  

2 :o~; 

DS 
(a) 

. W M  

4 ~'74° 

DS 

(b) 
Fig. 1. Shift diagrams illustrating the relationship between coordin- 

ates generated by different refinement methods for (a) all atoms, 
and (b) main-chain atoms only. 
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halved for the other early rounds to prevent the energy 
E increasing. Three side-chain errors discovered from 
the difference map were corrected by hand at cycle 12, 
when two further cycles reduced R to 0-337. The 
refinement was not pursued further since the success of 
the method had become clear. 

Fig. 1 compares five different sets of coordinates: 
WM, the starting wire-model set (R = 0.511);  DSA, 
the best coordinates obtained by D&S without cal- 
culation of difference maps (R = 0-384); DS, the final 
coordinates of D&S (R = 0.308 without individual B's 
or water molecules); E + kA, the coordinates obtained 
by the method described here (R = 0-337 with 
individual B's, R = 0-358 without); and E, the result of 
energy minimization alone on WM. The method of 
comparison is that introduced by Diamond (1974): the 
figures are the principal projections of sets of five points 
in 3N dimensional space (for N atoms). The numbers 
joining any two vertices give the r.m.s, difference (in A) 
between the two coordinate sets, and the cosine of any 
marked angle is the correlation coefficient between two 
sets of shifts. We note that energy minimization alone 
(set E) gives very small shifts (r.m.s. movement 0-18 
A) which are almost orthogonal to those obtained by 
any method of refinement against the X-ray data;  E + 
kA shifts, on the other hand, are much larger, and are 
highly correlated with those of sets DSA and DS, 
although the final energy is still comparable with that of 
set E. Table 2 gives the R factors and values of  A for 
the various sets. 

shows histograms of  the coordinate errors (relative to 
DS) for sets WM, DSA and E + kA. We see that the 
great majority of the atoms in sets DSA and E + kA 
are within 0.3 A of DS, suggesting that both would 
automatically converge to the same solution on further 
refinement. The large apparent distance between DSA 
and E + kA arises mainly from the large (>2 A) errors 
which have not been corrected by either refinement 
method. These are the very errors which should be 
most obvious from a difference map. 

Comparing torsion angles of the three sets of 
coordinates, we find that the largest differences between 
the starting angles and those of  D&S occur in the 
peptide linkages at residues 2-3,  25-26  and 55-56.  
Table 3 compares the three sets of angles in these 
regions, and we see that the largest errors (> 110 °) have 
not been corrected, whereas changes of  ca 60 ° have 
occurred automatically. The range of convergence is 

lOO 

3 6 9 >3~ 
(a) 

Table 2. R fac tors  o f  various coordinate sets, with and 
without individual  atomic B's  

Without B's With B's 

d (x 10 g) R zt (x 10 s) R 

WM 0.562 0.511 
E + kA 0.153 0.358 
DSA 0.194 0.384 
DS 0.116 0.308 

0.133 0.337 

At first sight it is disturbing that E + kA is not much 
closer to DS (assumed to be the 'correct '  answer) than 
is WM, and that E + kA and DSA are so far apart. 
However, the distribution of errors is reassuring. Fig. 2 

3 6 9 >3~, 

(b) 

3 6 9 ~ ' 3~  

(c) 

Fig. 2. Histograms of coordinate errors (i.e. shifts relative to set 
DS) for (a) WM, (b) DSA, and (c) E + kA. 

Start 

Table 3. Comparison o f  three peptide conformations 

Pro-Asp3 

D & S This work Start 

Ala25-Lys26 

12 ° 151 ° -21 ° 25 ° 
180 177 173 180 
55 -60 106 -136 

D&S This work Start 

Cys55-Gly56 

D & S This work 

-28 ° -10 o -81 ° _4 ° _38 ° 
170 177 180 190 205 

-66 -76 -9  -77 -61 
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therefore comparable to that of real-space refinement, 
which is able to correct errors of up to twice the atomic 
radius. 

Computational needs 

Central-processor times on an IBM 370/165 computer 
are 1-5 rain to compute the X-ray normal matrix 
(including difference map calculation), 1 min for 30 
cycles of conjugate-gradient minimization without H 
atoms (1500 variables), or 2 min with H atoms (2700 
variables), and 2 min for the structure factor cal- 
culation. The latter may be reduced to about 0-5 min 
by constructing a model electron-density map and 
computing its Fourier transform (Ten Eyck, 1977), 
although we have not done this in the present work. 
The programs which compute the normal matrix need 
100 kbytes of core (using the IBM sort/merge package 
for the sort steps); the minimization program can 
handle up to 1500 atoms (4500 variables) in 260 
kbytes. 

The minimization routine used is a modified version 
of the Harwell program VAO8A. A routine with 
automatic restarts (VA 14A; Powell, 1975) usually finds 
a lower minimum in fewer cycles, but requires too 
much storage to make its use generally worth while. 

Conclusions 

The refinement method described here combines 
advantages of three other methods: real-space refine- 
ment, gradient/curvature refinement, and conventional 
least squares. It has the speed of  gradient/curvature 
methods, whilst maintaining proper stereochemistry at 
all stages. Because a new map is computed on each 
round, the function minimized is equivalent to a 
difference of moduli; the phases are not treated as 
observations. The convergence radius may be made 
comparable to that of real-space refinement if the 
process is started with low-resolution data. The 
convolution of the difference-map gradient with an 
electron-density profile makes the process equivalent to 
one of volume fitting rather than peak-maximum fitting, 
and is thus capable of increasing the theoretical radius 
of convergence (Diamond, 1971). Since the con- 
volution is calculated as a sum over grid points, the 
correction discussed by Diamond (1971, p. 440) should 
be applied; we have not done this, but if the difference 
map is computed on a sufficiently fine grid the errors 
are no more than a few per cent. 

The work on PTI has shown that positional errors of 
up to 2 or 3 A may be corrected automatically. Regions 

of the molecule where errors were greater are still 
incorrect, but the overall improvement of the model 
means that difference maps are much more easily inter- 
pretable. The method has also proved valuable in the 
final stages of refinement when convergence of the real- 
space method has become slow. Unfortunately there is 
still no sign of any short cut through the intermediate 
stages: the only way to be certain that no part of the 
structure has refined into a false minimum is to make a 
systematic study of difference maps, possibly omitting 
doubtful regions of the molecule from the structure 
factor calculation. 

We thank Dr J. Deisenhofer for providing PTI 
coordinates from intermediate stages of the real-space 
refinement. 
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